

PII: S0277-5387(96)00575-X

Syntheses and spectroscopic properties of palladium(II) complexes with bidentate phosphine and thiolate ligands. X-ray crystal structure of [Pd(SCH₂Ph)₂{Ph₂P(CH₂)₃PPh₂}]

Weiping Su,^a Rong Cao,^a Maochun Hong,^a* Zhongyong Zhou,^a Feng Xie,^a Hanqin Liu^a and Thomas C. W. Mak^b*

^aFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China

^bDepartment of Chemistry, The Chinese University of Hong Kong, Shaitin, New Territories, Hong Kong

(Received 28 October 1996; accepted 15 November 1996)

Abstract—By the reactions of Pd^{2+} , thiolate (PhCH₂S⁻ or pdt) and dppe or dppp [pdt = SCH₂CH₂CH₂S²⁻, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane] in MeOH, the following complexes, [Pd(SCH₂Ph)₂(dppe)] (1), [Pd(SCH₂Ph)₂(dppp)] (2) and [Pd(pdt)(dppp)] (3), were prepared. The crystal structure of 2 was analysed by single-crystal X-ray diffraction. The palladium atom is tetra-coordinated with a distorted square-planar geometry of two phosphorus and two sulfur atoms. Their IR, ³¹P and ¹H NMR spectra are reported. © 1997 Elsevier Science Ltd

Keywords: palladium(II) complexes; syntheses; crystal structure; NMR spectra; IR spectra.

Owing to their variation in geometric and electronic structures, and their application for homogeneous or heterogeneous catalytic functions, transition metal complexes with phosphine ligands have been studied extensively [1]. In recent years, we have explored the complexes blending both phosphine and thiolate ligands and a series of the complexes, such as $(Et_4N)[Co(SPh)_3(PPh_3)]$ [2], $[Co(SPh)_2L]$ (L = Ph₂P (CH₂)₃PPh₂, Ph₂P(CH₂)₂P(Ph)(CH₂)₂PPh₂) [3], [Co₂ $(SPh)_4(dppx)$] [dppx = Ph₂PCH₂PPh₂, Ph₂P(CH₂)₂ PPh_{2}] [4-6], [Co₃(SC₆H₄S)₃(PBu₃ⁿ)₃] [7], [Ni(SR)₂ $(PBu_{3}^{n})_{2}$] (R = Ph, *p*-tol) [8] and [Ni(SC₂ H₄SC₂H₄S)PPh₃] [9], have been reported. By the reactions of Ni²⁺ or Pd²⁺, 1,2-dithilates and PR₃ (R = Ph, Et) in MeOH, we have also isolated complexes Ni₂(edt)₂(PPh₃)₂] and [Ni₂(edt)₂(PEt₃)₂] [10,11], Pd(tdt)(PPh₃)₂, Pd₂(edt)₂(PPh₃)₂, Pd₂(pdt)₂ $(PPh_3)_2$, $Pd_2(edt)_2(PEt_3)_2$, $Pd_2(pdt)_2(PEt_3)_2$, $Pd_2(Hmp)_2$ $(PPh_3)_2Cl_2$ and $Pd_2(tdt)_2(PEt_3)_2$ [12] (tdt = 1,2tolunedithiolate, edt = 1,2-ethanedithiol, pdt = 1,2propanedithiol and mp = mecaptophenol). Herein we report the syntheses and spectroscopic properties of a series of Pd^{2+} complexes with blending bidentate phosphine and thiolate ligands, $[Pd(SCH_2Ph)_2(dppe)]$ (1), $[Pd(SCH_2Ph)_2(dppp)]$ (2) and [Pd(pdt)(dppp)](3), of which the crystal structure of 2 has been determined by X-ray single-crystal diffraction. The crystal structures of 1 and 3 have also been reported by our group [13].

EXPERIMENTAL

All operations were carried out under dinitrogen with standard Schlenk techniques. Reagent $PdCl_2$, $HSCH_2Ph$, H_2pdt and phosphine ligands were purchased from Merck, solvents from Shanghai Chemical Company. Na₂pdt and NaSCH₂Ph were obtained from the stoichiometric reaction of H_2pdt and $HSCH_2Ph$ with sodium metal in MeOH, respectively.

All elemental analyses were carried out in this Insti-

^{*}Authors to whom correspondence should be addressed.

tute. IR spectra were recorded on a Magna 750 IR spectrometer. ³¹P NMR spectra were measured in DMSO on a Varin Unit-500 spectrometer with saturated H_3PO_4 as the external standard.

Preparation of the complexes

[Pd(SCH₂Ph)₂(*dppe*)] (1). To a stirred solution of dppe (0.38 g, 1 mmol) and anhydrous PdCl₂ (0.18 g, 1 mmol) in DMF (20 cm³) a solution of NaSCH₂Ph (0.27 g, 2 mmol) in MeOH (15 cm³) was added. After the reaction solution was stirred for 24 h, a black precipitate formed was filtered off. The filtrate was mixed with CH(CH₃)₂OH (10 cm³). The final solution was filtered again and the filtrate was kept in an icebox for 2 weeks to yield dark-red crystals of 1 (42%). IR (KBr): 528(s), 482(m), 438(w), 380(m), 353(m), 305(m) cm⁻¹. ¹H NMR (ppm): 3.36, 3.75, 7.17, 7.40, 7.77; ³¹P NMR (ppm): 55.8. Found: C, 64.7; H, 5.3; P, 8.0. Calc. for C₄₀H₃₈PdS₂P₂: C, 63.9; H, 5.1; P, 8.3%.

[Pd(SCH₂Ph)₂(*dppp*)] (2). To a stirred solution of dppp (0.40 g, 1 mmol) and anhydrous PdCl₂ (0.18 g, 1 mmol) in DMF (15 cm³) a solution of NaSCH₂Ph (0.27 g, 2 mmol) in MeOH (15 cm³) was added. After the reaction solution was stirred for 24 h, the black precipitate which formed was filtered off. The filtrate was mixed with CH(CH₃)₂OH (10 cm³). The final solution was filtered again and the filtrate was kept in an icebox for 2 weeks to yield dark-red crystals of 2 (38%). IR (KBr): 509(m), 482(m), 432(w), 372(m), 330(m), 307(m) cm⁻¹. ¹H NMR (ppm): 1.61, 2.50, 3.36, 3.72, 7.08, 7.14, 7.37, 7.67; ³¹P NMR (ppm): 9.17. Found: C, 63.2; H, 5.0; P, 8.2. Calc. for C₄₁H₄₀PdS₂P₂: C, 64.3; H, 5.2; P, 8.1%.

[Pd(*pdt*)(*dppp*)] · *CH*₃*CN*] (**3**). To a stirred solution of dppp (0.40 g, 1 mmol) and anhydrous PdCl₂ (0.18 g, 1 mmol) in MeCN (35 cm³) a solution of Na₂pdt (0.16 g, 1 mmol) in MeOH (15 cm³) was added. After the reaction solution was stirred for 24 h, a black precipitate formed was filtered off. The filtrate was mixed with CH(CH₃)₂OH (10 cm³). The final solution was filtered again and the filtrate was kept in an icebox for 2 weeks to yield dark-red crystals of **3** (35%). IR (KBr): 513(m), 482(m), 449(w), 432(w), 422(w), 360(m), 339(m), 300(m) cm⁻¹. ¹H NMR (ppm): 1.85, 2.65, 3.37, 7.37, 7.63; ³¹P NMR (ppm): 6.87. Found: C, 58.2; H, 5.1; P, 8.9. Calc. for C₃₂H₃₅NPdS₂P₂: C, 57.7; H, 5.3; P, 9.3%.

X-ray structural analysis

Suitable single crystal of **2** was mounted on a glass fibre and data collection was performed at ambient temperature on a Rigaku RX-II Imaging Plate diffractometer using graphite-monochromatized Mo- K_{α} radiation ($\lambda = 0.71073$ Å). The crystallographic and data collection parameters are summarized in

Table 1. Crystallographic data and refinement parameters for 2

Formula	$C_{41}H_{40}P_2S_2Pd$
Mol. wt	765.20
Crystal system	monoclinic
Space group	$P2_1/c$
a (Å)	18.381(4)
b (Å)	9.434(2)
c (Å)	22.559(5)
α (°)	90
β (°)	108.30(3)
γ (°)	90
$V(Å^3)$	3714(2)
Z	4
$D_{c} (g \text{ cm}^{-3})$	1.368
μ (cm ⁻¹)	7.26
F(000)	1576
R	0.046
R_w	0.052
Crystal dimensions (mm ³)	$0.20 \times 0.25 \times 0.30$
Scan mode	ω
2θ range (°)	2–45
hkl range	h = 0-23, k = -11-10,
-	l = -28-27
No. of reflections measured	12,891
No. of reflections refined	6777 with $F > 4\sigma(F)$
Parameters refined	415
w	$\sigma^2(F) + 0.0001F^2$
Highest residue (e Å ³)	0.54
Lowest residue (e Å ³)	-0.67

Table 1. The coordinates of the metal atom were determined by Patterson method and the remaining nonhydrogen atoms were located from successive difference Fourier syntheses. The structure was refined by the full-matrix least-squares technique with anisotropic temperature factors for all non-hydrogen atoms. The H atoms were not included in the calculations. All calculations were performed on a Compaq 486 computer with the SHELEXTL-PC program package.

RESULTS AND DISCUSSION

Syntheses of the complexes

From the reaction system of Pd^{2+} , the bidentate phosphine ligand (dppe or dppp) and thiolate (PhCH₂S⁻ or SCH₂CH₂CH₂S²⁻) in DMF/MeOH complexes 1-3 were isolated. If the bidentate phosphine ligands and Pd²⁺ were used as initial reactant to react with either thiolate or 1,2-dithiolate, the products obtained are always mononuclear, which is different from the reaction system of Pd²⁺, PR₃ (R = Et, Ph) and thiolate where both mononuclear and binuclear complexes were isolated [12].

In our previous work, a cleavage of the C—S bond and a condensation of two edt ligands was observed during the reaction of Ni^{2+} , a bidentate ligand of SCH₂CH₂S²⁻ and PR₃ (R = Et, Ph) in 1:1:2 molar ratio in methanol [10]. However, similar to the reaction system of Pd²⁺, PR₃ (R = Et, Ph) and bidentate ligands [SC₆H₃(CH₃)S²⁻ SCH₂CH₂S²⁻, SCH₂CH (CH₃)S²⁻, HOC₆H₄S⁻] [12], the cleavage of the C--S bond was not observed in this reaction system of Pd²⁺, bidentate phosphine ligands and SCH₂ CH₂CH₂S²⁻, PhCH₂S⁻).

Structure of $[Pd(S_2CH_2Ph)_2(dppp)]$ (2)

Selected bond distances and bond angles are listed in Table 2. The molecular structure of 2, as depicted in Fig. 1, does not possess any crystallographic symmetry. The palladium atoms is coordinated by two phosphorus atoms from phosphine and two sulfur atoms from the thiolate ligands in a distorted squareplanar geometry. The bidentate dppp ligand chelates to the Pd atom to form a six-membered ring, [(P(1)P(2)C(1)C(2)C(3)Pd]], which is in a chair form. The dihedral angle of PdS₂ and PdP₂ planes is 169.28°. The Pd Atom is 0.18 Å above the least-squares plane S(1)S(2)P(1)P(2). Two Pd—S—C angles are quite different, being 100.0(1) and 109.5(1)°. The average Pd—S bond length is 2.364(9) Å, longer than those found in the nickel complexes containing monodentate thiolate and phosphine ligands, such as $[Ni(S-p-Tol)_2(PBu_3^n)_2]$ (2.213 Å) and $[Ni(SPh)_2]$ $(PBu^{n})_{2}$ (2.217 Å) [8]. The average Pd—P bond length of 2.284(3) Å is longer than those reported in the Ni-S-P complexes [8,11] and those in $[Co_2(SPh)_4(dppe)]$ (2.210 Å) [14] and $[Pt(SPh)_2]$ (dppm)] (2.247 Å) [15]. The comparison of the significant molecular parameters for some M-S-P (M = Pd, Ni) complexes are listed in Table 3. The average C—S bond distance (1.839 Å) is much longer than (1.74–1.80 Å) found in other M-thiolate complexes.

All sulfur atoms in the molecule adopt the sp^3 configuration. As shown in Scheme 1, such configuration may induce that the two PhCH₂S⁻ ligands and metal atom form three conformations: C, M, and S types. For instance, the conformation of Pt(dppe)(SPh)₂ is C type [15] and that of Co(dppp)(SPh)₂ is M type [3]. The conformation of **2** is S type, because there is a considerable torsion in the MS₂P₂ plane due to the arrangement of the atoms in C or M conformation.

³¹P NMR spectra

The ³¹P NMR chemical shifts of the complexes and some relating compounds are listed in Table 4. It is shown that the chemical shifts of the ligand dppp in the complexes are in the range 6.87–9.17 ppm, while that of dppe is 55.8 ppm. It is clear that electrons are transferred from phosphorus atoms to the metal atoms to cause the P nucleus to be deshielded to downfield and the increased chemical shifts and the deshielding of P in dppe complexes is much higher than that in dppp complexes. As mentioned above, the five-membered chelating ring PdP_2C_2 in the dppe complex is in a nearly planar form, while the sixmembered chelating ring PdP_2C_3 in dppp complexes is non-planar chair form. The coordination of P atoms to metal atoms may be stronger in the dppe complex than in the dppp complexes and more electrons are transferred from phosphorus atoms to the metal atoms to cause the higher deshielding.

Table 2. Selected bond distances (Å) and bond angles (°) for Pd(SCH2Ph)2(dppp)

Pd(1)—P(1)	2.283	(1)	Pd(1)-P(2)	2.285	(1)
Pd(1) - S(1)	2.372	(1)	Pd(1) - S(2)	2.355	(1)
P(1) - C(1)	1.834	(3)	P(1) - C(11)	1.829	(4)
P(1) - C(21)	1.819	(4)	P(2) - C(3)	1.831	(4)
P(2)-C(31)	1.824	(5)	P(2)C(41)	1.823	(4)
S(1)C(4)	1.831	(6)	S(2)—C(5)	1.846	(4)
C(1)-C(2)	1.528	(6)	C(2) - C(3)	1.551	(5)
C(4)C(51)	1.508	(6)	C(5)—C(61)	1.499	(7)
P(1)—Pd(1)—P	P (2)	92.8(1)	P(1)-Pd(1)-	- S (1)	174.0(1)
P(2) - Pd(1) - S	5(1)	86.7(1)	P(1)-Pd(1)-	-S(2)	86.2(1)
P(2)-Pd(1)-S	(2)	178.9(1)	S(1)Pd(1)-	-S(2)	94.4(1)
Pd(1)-P(1)-C	C(1)	116.5(1)	Pd(1)P(1)-	-C(11)	109.9(1)
C(1) - P(1) - C(1)	(11)	105.0(2)	Pd(1)-P(1)-	-C(21)	117.6(1)
C(1) - P(1) - C(1)	(21)	99.2(2)	C(11)-P(1)-	-C(21)	107.3(2)
Pd(1)-P(2)-C	C(3)	117.8(1)	Pd(1)-P(2)-	-C(31)	110.2(1)
C(3)-P(2)-C	(31)	104.6(2)	Pd(1)-P(2)-	-C(41)	117.2(1)
C(3) - P(2) - C(3)	(41)	97.9(2)	C(31)-P(2)-	-C(41)	107.8(2)
Pd(1) - S(1) - C	C(4)	100.0(1)	Pd(1)-S(2)-	-C(5)	109.5(1)
P(1) - C(1) - C(1)	(2)	116.9(3)	C(1)-C(2)-	-C(3)	111.3(4)
P(2) - C(3) - C(3)	(2)	114.5(3)	S(1)-C(4)-	C(51)	110.3(4)
S(2) - C(5) - C(5)	(61)	112.9(3)			

Fig. 1. Structure of complex 2 with H atoms omitted.

Table 3. Comparison of the significant molecular parameters for some M—S—P (M = Pd, Ni) complexes

Complex	M—St ^a	M-S _b	M—P	Reference
1	2.360(2)		2.277(2)	[13]
2	2.296(3)		2.281(3)	This work
3	2.327(8)		2.298(6)	[13]
4	2.297(5)		2.330(3)	[12]
5	2.305(6)		2.291(6)	[12]
6	2.158(2)	2.198(3)	2.188(3)	[10]
7	2.170(1)	2.205(2)	2.193(2)	[10]
8	2.158(3)	2.201(2)	2.184(3)	[10]

4 Pd(tdt) (PPh₃)₂], 5 [Pd₂(tdt)PEt₃)₂], 6 [Ni₂(edt)₂(PPh₃)₂], 7 [Ni₂(pdt)₂(PPh₃)₂], 8 [Ni₂(pdt)₂(PEt₃)₂].

Scheme 1. Structural types of mononuclear transition metal complexes with dithiolate and phosphine ligands.

For these complexes, one ³¹P NMR signal in DMSO was observed in solution, indicating that the environments of the two phosphorus atoms in each complex are identical. From the molecular structure information and related studies [16], we can deduce that each of these complexes adopts only one structural mode in solution. This is different from the Ni²⁺ complexes with edt and bidentate phosphine ligands, which possess several structural modes in solution [17].

Complex	v_{M-P} or v_{M-P} (cm ⁻¹)	δ (ppm)	Reference
[Pd(SCH ₂ Ph) ₂ (dppe)] ^a	380, 353, 305	55.8	This work
[Pd(SCH ₂ Ph) ₂ (dppp)] ^a	372, 330, 307	9.17	This work
[Pd(pdt) (dppp)] ^a	360, 339, 300	6.87	This work
[Ni (edt) (dppp)] ^b		43.2, 32.7, 21.4, 5.7	[17]
[Ni (tdt) (dppe)]"		59.0	[17]
dppe		-12.5	[18]
dppp		-16.7	[18]

Table 4. IR absorption peaks and ³¹P NMR chemical shifts of the palladium and some relating complexes

^a DMSO as solvent.

^b CDCl₃ as solvent.

The ¹H NMR spectra of the complexes in DMSO at ambient temperature exhibit phenyl resonances at the range 7.14–7.77 ppm and the methylene resonances in multiplet with the range 1.61–3.75 ppm. The proton chemical shifts of these complexes are similar to the respective free ligands.

The 400–4000 cm⁻¹ region of IR spectra for the complexes is the diphosphine and thiolate ligand fingerprints and very little changes are observed upon complexation with metal atoms. v(Pd-P) and v(Pd-S) vibration absorptions of the complexes are in the range 300–380 cm⁻¹ and are difficulty to distinguished with each other.

Acknowledgement—This work was supported by the National Natural Science Foundation of China and the Natural Science Foundation of Fujian Province.

REFERENCES

- Puddephatt, R. J., Chem. Soc. Rev. 1983, 12, 99; Cotton, F. A., Dunbar, K. R. and Verbruggen, M. G., J. Am. Chem. Soc. 1987, 109, 5498; Kiress, R. V. and Eisenberg, R., Inorg. Chem. 1989, 28, 3372.
- Jiang, F. L., Wei, G. W., Lei, X. J., Huang, Z. Y., Hong, M. C. and Liu, H. Q., *J. Coord. Chem.* 1992, 25, 185.
- Wei, G. W., Hong, M. C., Huang, Z. Y. and Liu, H. Q., J. Chem. Soc., Dalton Trans. 1990, 2145.
- Wei, G. W., Liu, H. Q., Huang, Z. Y., Hong, M. C., Huang, L. R. and Kang, B. S., *Polyhedron* 1991, **10**, 553.

- 5. Wei, G. W. and Liu, H. Q., Acta Cryst. 1992, C47, 2130.
- Wei, G. W., Liu, H. Q., Huang, Z. Y., Huang, L. R. and Kang, B. S., J. Chem. Soc., Chem. Commun. 1989, 1939.
- Kang, B. S., Peng, J. H., Hong, M. C., Wu, D. X., Chen, X. T., Weng, L. H., Lei, X. J. and Liu, H. Q., J. Chem. Soc., Dalton Trans. 1991, 2897.
- Jiang, F. L., Wei, G. W., Lei, X. J., Huang, Z. Y., Hong, M. C. and Liu, H. Q., J. Chem. Res. (S) 1991, 238.
- Cao, R., Lei, X. J., Huang, Z. Y., Hong, M. C. and Liu, H. Q., J. Coord. Chem. 1992, 25, 165.
- Cao, R., Hong, M. C., Jiang, F. L., Xie, X. L. and Liu, H. Q., J. Chem. Soc., Dalton. Trans. 1994, 3459.
- Cao, R., Huang, Z. Y., Lei, X. J., Kang, B. S., Hong, M. C. and Liu, H. Q., *Chinese J. Chem.* 1992, **10**, 227.
- Cao, R., Hong, M. C., Jiang, F. L., Kang, B. S., Xie, X. L. and Liu, H. Q., *Polyhedron* 1996, 15, 2661.
- 13. Su, W. P., Hong, M. C., Jiang, F. L., Xie, X. L. and Liu, H. Q., *Acta. Cryst.* 1997, in press.
- Wei, G. W., Hong, M. C., Huang, Z. Y. and Liu, H. Q., Chinese J. Chem. 1992, 11, 334.
- Wei, G. W., Hong, M. C., Huang, Z. Y. and Liu, H. Q., J. Struct. Chem. 1991, 10, 159.
- Abel, E. W., Evans, D. G., Koe, J. R., Hursthouse, M. B., Mazid, M., Mahon, M. F. and Molloy, K. C., *J. Chem. Soc. Dalton Trans.* 1990, 1697.
- 17. Cao, R., Ph. D. Thesis, Fuzhou, 1993.
- Gorenstein, D. G. and Stah, D. O., ³¹P NMR Principles and Applications. Academic Press, New York, 1984, p. 55.